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ABSTRACT

The characteristics of forecast-error covariances, which are of central interest in both data assimilation and
ensemble forecasting, are poorly known. This paper considers the linear dynamics of these covariances and
examines their evolution from (nearly) homogeneous and isotropic initial conditions in a turbulent quasigeo-
strophic flow qualitatively similar to that of the midlatitude troposphere. The experiments use ensembles of 100
solutions to estimate the error covariances. The error covariances evolve on a timescale of O(1 day), comparable
to the advective timescale of the reference flow. This timescale also defines an initial period over which the
errors develop characteristic features that are insensitive to the chosen initial statistics. These include 1) scales
comparable to those of the reference flow, 2) potential vorticity (PV) concentrated where the gradient of the
reference-flow PV is large, particularly at the surface and tropopause, and 3) little structure in the interior of
the troposphere. In the error covariances, these characteristics are manifest as a strong spatial correlation between
the PV variance and the magnitude of the reference-flow PV gradient and as a pronounced enhancement of the
error correlations along reference-flow PV contours. The dynamical processes that result in such structure are
also explored; the key is the advection of reference-flow PV by the error velocity, rather than the passive
advection of the errors by the reference flow.

1. Introduction

Estimates of forecast-error covariances are crucial for
statistical data assimilation schemes, yet little is known
about the form of error covariances or their relation to
the flow in the atmosphere or ocean at a given instant.
Most existing information comes from fitting stationary,
isotropic covariance models to differences between ob-
servations and short-range forecasts (e.g., Hollings-
worth and Lönnberg 1986), and similar models are in
turn assumed in all present operational assimilation
schemes. The extent to which such stationary, isotropic
covariances approximate the true forecast-error covari-
ances is still an open question.

The form and magnitude of forecast-error covariances
reflect both the prior evolution of errors during the fore-
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cast and the modification of those errors by the assim-
ilation of new observations. The present paper focuses
on the former process and considers the evolution of
error covariances beginning from an isotropic initial er-
ror distribution. For simplicity, we employ a high-res-
olution quasigeostrophic channel model and examine
the covariance evolution in the limit of small errors; that
is, the error evolution is assumed to be governed by
dynamics linearized about a reference solution, which
consists of a turbulent jet with superimposed baroclinic
waves. Our specific interests include the timescales for
covariance evolution, the typical structure (particularly
the anisotropy) of forecast-error covariances, and the
relation of that structure to the reference flow. A com-
panion paper (Hamill et al. 2002) examines the structure
and flow dependence of analysis errors in a cycling
forecast-analysis system, and addresses the extent to
which covariance structure produced by the dynamics
(and described here) survives the assimilation of ob-
servations.

For all but the simplest systems, explicit evolution of
error covariances is a formidable calculation. Contin-
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uous systems require the solution of a partial differential
equation in twice the number of spatial dimensions of
the original system (Cohn 1993 and references therein).
For discrete systems, such as our quasigeostrophic mod-
el, the problem becomes the evolution of a covariance
matrix whose size scales as the square of the number
of degrees of freedom of the system.

Here, we employ an approximate, Monte Carlo tech-
nique, first sampling the errors (or, as we will frequently
refer to them, perturbations) from a specified initial dis-
tribution, then evolving the ensemble forward in time
and examining the properties of the sample covariance
matrix. In most of our simulations, the ensemble size
is O(100) while the model possesses nearly 105 degrees
of freedom. By contrast, it is often assumed in ensemble
forecasting (Molteni et al. 1996; Toth and Kalnay 1997)
that directly sampling from the initial error distribution
is of limited utility with such small ensembles, as the
inherent sampling error may overwhelm the desired co-
variance information. An important question, which we
will also address briefly, is the extent to which small
ensembles directly sampled from the initial error dis-
tribution can provide useful covariance estimates.

Because of the difficulty of evolving error covari-
ances, there is scant literature pertaining to the devel-
opment of anisotropy and its relation to the reference
flow. Cohn (1993) presents an analytic theory for error-
covariance evolution in univariate partial differential
equations; while including examples of interest (such
as the advection of a passive scalar), this theory does
not encompass more complicated systems such as two-
dimensional barotropic flow. That system was studied
in its continuous form by Thompson (1986), who
showed analytically that, given homogeneous, isotropic
initial errors, the initial growth of error enstrophy (vor-
ticity variance) arose from the development of anisot-
ropy in the errors and was concentrated in regions where
the vorticity gradient of the reference flow was large.
In experiments with an extended Kalman filter, Evensen
(1992) explicity evolved error covariances for a low-
resolution quasigeostrophic model and showed that
evolving the covariances based only on advection by
the reference flow (and thus ignoring the interaction of
the errors with the reference-state potential vorticity gra-
dients) was a poor approximation to the full evolution.
Bouttier (1993) also explicitly evolved error covariances
but in a low-resolution, spherical barotropic model and
found anisotropic signatures of Rossby wave propaga-
tion and advection by the reference flow within one day.
The baroclinic, primitive equation problem was consid-
ered by Todling and Ghil (1994), but only in the context
of a two-layer model and using a broad zonal jet as the
reference flow. Finally, Fischer et al. (1998) evolved
error covariances for a semigeostrophic model with uni-
form interior potential vorticity. Like Thompson (1986),
they note a tendency for the error variance to be con-
centrated where the gradients of potential vorticity are
large in the reference flow.

Dynamical systems theory provides further guidance
concerning covariance evolution, at least in the limit of
long times and small errors. If we make an infinitesi-
mally small perturbation to the initial state of a nonlinear
system, that perturbation will converge after sufficient
time to a specific direction, known as the first Lyapunov
vector. This direction depends on the state of the system
(and thus varies in time) but is independent of the initial
perturbation. More generally, a set of n infinitesimal
perturbations will converge to the subspace spanned by
the first n Lyapunov vectors. [See Legras and Vautard
(1995) for further discussion and references, and Snyder
and Hamill (2003, hereafter SH) for the properties of
the leading Lyapunov vectors of the quasigeostrophic
flow considered here.] Ignoring nonlinear effects, error
covariances must then, in the limit t → `, reflect the
structure of the leading Lyapunov vectors. In section 5,
we will investigate whether the convergence to the lead-
ing Lyapunov vectors is significant over finite time in-
tervals of a day or two.

As already mentioned, our primary motivation for
exploring covariance evolution is to characterize the
flow dependence and anisotropy of short-range forecast-
error covariances required in statistical data assimila-
tion. While it is clear that dynamics influence the error
covariances over the course of the short-range forecast
itself, the influence of the dynamics also extends beyond
the previous analysis into the recent past, as the errors
in that analysis arose from both observation errors and
errors in the previous short-range forecast, and those
forecast errors were in turn influenced by even earlier
analyses and forecasts. Thus, in what follows we will
consider the covariance evolution over forecasts of a
few days, rather than restricting our attention to the 6-
or 12-h forecasts typically used in global or synoptic-
scale assimilation schemes. This view of the problem
as series of short-range forecasts followed by analyses
also provides some justification for considering only
linear dynamics, as existing evidence (Errico et al. 1993;
Gilmour et al. 2001) indicates forecast errors at synoptic
scales evolve linearly over the first 12–48 h of the fore-
cast. To see the relevance of our calculations to errors
in a cycling forecast-analysis system, we refer the reader
to the companion paper (Hamill et al. 2002).

Lacking a useful theory for error-covariance evolu-
tion in our system, we adopt an experimental approach.
Section 2 provides details of the numerical experiments;
the covariance evolution is estimated, as mentioned pre-
viously, by drawing a random sample of initial pertur-
bations from a specified Gaussian distribution and then
evolving that sample forward in time using dynamics
linearized about the reference solution. A description of
the quasigeostrophic model also appears in section 2.
Following the description of the numerical experiments,
section 3 documents the qualitative resemblance of the
reference solution to midlatitude synoptic-scale flows.
Of particular importance for the perturbation evolution
is the fact that by far the largest potential-vorticity gra-
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dients are found, as in the atmosphere, at the surface
and the lid (the model’s version of the tropopause). Sec-
tion 4 then presents results for the error-covariance evo-
lution, which show that within 1–2 days the covariances
have become highly anisotropic and possess a well-de-
fined relation to the reference flow. On this same time-
scale of 1–2 days, there is also substantial convergence
of the perturbations into the subspace of the first 20
Lyapunov vectors (section 5). We discuss various as-
pects of the perturbation dynamics in section 6, includ-
ing the role of reference-state potential-vorticity gra-
dients and of dissipation. The paper concludes with a
summary and a discussion of some implications of our
results.

2. The numerical experiments

a. The quasigeostrophic model

We consider Boussinesq quasigeostrophic flow hav-
ing constant buoyancy frequency N and confined to a

zonally periodic channel bounded meridionally and at
top and bottom by rigid surfaces. The flow is driven by
Newtonian relaxation to a specified baroclinic zonal jet.
An Ekman layer at the surface and a weak numerical
smoothing provide dissipation.

Most of the subsequent discussion will use nondi-
mensional variables obtained by scaling vertical dis-
tance by H, the depth of the channel; horizontal distance
by the Rossby radius NH/ f , where f is the Coriolis
parameter; velocities by U, the maximum speed of the
jet toward which the flow is relaxed; and time by the
advective timescale, fU/NH.

In the nondimensional variables, the flow is governed
by the evolution equations for the pseudo–potential vor-
ticity q (PV hereafter),

]q
21 e1 v · =q 5 (2t 1 D)(q 2 q ), (1a)

]t

and for the potential temperature u (a deviation from
the constant background stratification) at the surface and
lid,

 2 2] ]
21 e]u 2G 1 f 1 (2t 1 D)(u 2 u ), at z 5 0

2 21 21 v · =u 5 ]x ]y (1b)
]t 

21 e(2t 1 D)(u 2 u ), at z 5 1.

Here, the streamfunction f is related to velocity and
temperature by (u, y, u) 5 (2]f/]y, ]f/]x, ]f/]z), and
to q and u through

2 2 2q 5 by 1 ] f/]z 1 ¹ f, (2)

with boundary conditions ]f/]z 5 u at z 5 0, 1. In
addition, v 5 (u, y) is the horizontal velocity, = is the
horizontal gradient operator, t is the relaxation time,
and the superscript e indicates the zonal state toward
which the flow is relaxed. We choose qe 5 by and ue

given by (17) in Hoskins and West (1979) with their
parameter m 5 1; fe and u e may be inferred from ue

and the geostrophic and hydrostatic relations. The pa-
rameter G 5 (Ay /2 f )1/2N/U, where Ay is the coefficient
of vertical eddy viscosity, controls the Ekman pumping
(Pedlosky 1987, his section 4), and D is a numerical
smoothing operator defined by

4 4 4 4D 5 2n(] /]x 1 ] /]y ).

This smoothing controls the buildup of potential en-
strophy at the smallest resolved scales.

The flow has periodicity xL in x. On the channel walls
at y 5 0, yL, both the normal flow and zonal-mean
acceleration are zero (Pedlosky 1987); thus,

2f9 5 ] f /]y]t 5 0 on y 5 0, y , (3)L

where an overbar indicates a zonal (x) average and a

prime the deviation from that average. If we assume that
] /]y 5 2ue at the initial time, then the latter conditionf
in (3) may be replaced by

e](f 2 f )/]y 5 0 on y 5 0, y , (4)L

The dissipative terms in (1) require additional wall con-
ditions for higher y derivatives. As discussed below, the
Poisson problem for f given q is solved numerically
using a spectral expansion; wall conditions consistent
with the assumed expansion and with (3) and (4) are

2n 2n 2n11 e 2n11] f9/]y 5 ] (f 2 f )/]y 5 0

on y 5 0, y , (5)L

for n 5 0, . . . , 3.
The numerical solution of (1)–(4) uses standard tech-

niques. The variables q and f are defined on a discrete
grid with N vertical levels at heights zn̂ 5 (n̂ 2 1/2)/N,
while u is defined at z 5 0, 1. Advective terms are
represented as in Arakawa (1966) and are integrated in
time using a leapfrog scheme; the dissipative terms use
a forward Euler time step and are lagged for stability.
The Poisson equation (2) for f is discretized with sec-
ond-order, centered differences and solved by a direct
method assuming a solution of the form
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TABLE 1. Values of nondimensional and dimensional parameters.
Where a nondimensional parameter has an obvious dimensional
counterpart, it is also given.

Parameter Nondimensional value Dimensional value

U
N
f
b
H
yL

xL

t
Ay

G
n

0.27

8.0
16.0

0.98 3 1022

0.30
1.9 3 1025

60 ms21

1.1 3 1022 s21

1024 s21

1.6 3 10211 m21 s21

9.0 km
8.1 3 103 km
16.0 3 103 km
20 d
5 m2 s21

M

g(x , y , z ) 5 a cos(mm̂p /M )Ok̂ m̂ n̂ 0mn̂
m51

K21 M21

1 a exp(ikk̂2p /K )O O kmn̂
k51 m51

3 sin(mm̂p /M ), (6)

where g is any of q, f, or u; (xk̂, ym̂, zn̂) gives the
gridpoint locations; and K and M are the number of grid
points in x and y, respectively. Further details may be
found in the appendix of Rotunno and Bao (1996).

The simulations presented below use K 5 128, M 5
64, N 5 8, and the parameter values specified in Table
1. The velocity scale U, which sets the timescale for
the simulations, was chosen to give an average error-
doubling time of approximately 2 days (SH). The re-
laxation time t and the smoothing coefficient n were
chosen to be as small as possible while still maintaining
a turbulent and well-resolved reference solution. Other
parameters have values typical of the midlatitude tro-
posphere.

In employing this quasigeostrophic (QG) model, our
goal is not to reproduce the atmospheric general cir-
culation. Rather, we seek a system that is intermediate
in complexity (and computational burden) between low-
order systems and numerical weather prediction models,
and that retains qualitative characteristics of synoptic-
scale atmospheric flows.

As our goal is not realism, we have made several
simplifications to the physics contained in (1)–(5). First,
the relaxation is applied to the PV, rather than to the
temperature as in some simple models of radiative re-
laxation. Second, the wall boundary conditions (5) do
not correspond to an obvious physical system. In ad-
dition, those wall conditions are not consistent with the
surface Ekman layer, in that the Ekman layer implies a
mass flux at the walls that should be taken up by wall
layers but is ignored here. We have chosen (5) for com-
putational simplicity since the channel walls themselves
are unrealistic.

In the figures that follow, we will employ for con-

venience the generalized PV q̃ rather than q. The gen-
eralized PV is identical to q at each vertical level except
the first and last ( j 5 1, N), where it is defined by

q̃ 5 q 1 N 3 u , q̃ 5 q 2 N 3 u , (7)1 1 0 N N N

with u0 and uN the potential temperature at the surface
and lid, respectively. Equation (7) is the discretized ver-
sion of Bretherton’s (1966) identification of the bound-
ary u as a d function of PV. Where there is no danger
of confusion below, we will simply refer to q̃ as the PV
and omit tildes.

b. The tangent linear model

Suppose we are given a solution (x, y, z, t) of (1),f
which we will refer to subsequently as the reference
solution or the reference state. The evolution of suffi-
ciently small perturbations to the reference state is ap-
proximated by the linearized equation,

21]q9/]t 1 v · =q9 1 v9 · =q 5 (2t 1 D)q9, (8)

along with similar equations [derived from (1b)] for u9.
Bars in (8) denote quantities associated with the ref-
erence state, while primes denote perturbations. All
boundary conditions for (1) are linear and thus are un-
changed for the linearized equations.

The linearized equations are solved using the same
discretization as for the nonlinear equations. In practice,
this means that the discretized form of (8), for example,
is obtained by linearizing the discretized form of (1a).

c. Ensembles of initial perturbations

As discussed in the introduction, ensembles of initial
perturbations will be drawn randomly from a specified
probability distribution. Such a sample would ideally
be drawn from the distribution of analysis error, which
would depend on the location and accuracy of recent
observations, the state of the flow, and on the data-
assimilation scheme. Even in a simple model such as
this, however, the analysis-error distribution is difficult
to compute and is poorly known. The properties of that
distribution are considered further in Hamill et al.
(2002).

Here, we simply sample the initial perturbations from
specified, multivariate normal distributions. Since the
correct initial distribution is uncertain, three different
distributions, and thus three different initial ensembles,
will be considered in order to assess how the results
depend on the choice of distribution. The three distri-
butions are related to three common inner products: en-
ergy, potential enstrophy, and squared streamfunction.
We will refer to the corresponding initial ensembles as
the energy ensemble, the potential-enstrophy ensemble,
and the streamfunction ensemble.

The distributions and initial ensembles are derived
from the inner products as follows. Let x be a vector
whose components are the spectral coefficients from an



JANUARY 2003 193S N Y D E R E T A L .

FIG. 1. Reference-state fields at t 5 120 days at (a) the uppermost
model level, (b) model level 5, and (c) the lowest model level. Non-
dimensional generalized PV is shaded with the darkest gray (white)
corresponding to a value of 16 (216); white lines are contours of
the nondimensional streamfunction (interval 0.4).

expansion of f9 as in (6). [One could equally well con-
sider perturbations in the gridpoint space, as long as
they are restricted to the subspace defined by the bound-
ary conditions (3) and (4).] Next, let S be a matrix that
specifies one of the inner products; that is, xT Sx gives
the norm of the perturbation in the specified inner
product. For each inner product, an initial ensemble is
then obtained by taking C 5 S21 and sampling x from
N(0, C), the multivariate normal distribution with mean
0 and covariance C. Definitions of the inner products
and details of the sampling procedure are given in the
appendix.

These choices for C have the practical appeal that
constructing random samples from N(0, C) is straight-
forward. Although it has been suggested (e.g., Palmer
et al. 1998) that the energy ensemble provides a rough
approximation, we emphasize that none of these choices
for C can fully capture the characteristics of analysis
errors. In particular, they do not reflect the dependence
of analysis errors on the observing network or the dy-
namics of the flow, which Hamill et al. (2002) show is
substantial.

Still, the relation of C to physical inner products pro-
vides two useful properties. First, the probability of a
perturbation depends only on its length in the chosen
norm, since N(0, C) has probability density that is pro-
portional to exp(2xTC21x). Thus, for example, two per-
turbations of equal energy are equally likely to appear
in the energy ensemble, and perturbations with smaller
energy are more likely than those with large energy.
This property also illustrates how the typical member
varies among the different ensembles. In broad terms,
perturbations in the potential-enstrophy ensemble on av-
erage have larger spatial scales than those in the energy
ensemble, since of two perturbations with equal energy,
the one with smaller scale will have larger potential
enstrophy. Perturbations from the streamfunction en-
semble, on the other hand, will have smaller spatial
scales on average than those in the energy ensemble.

Second, if the perturbations are projected onto sin-
gular vectors computed for the norm defined by S, the
projection coefficients are independent and have equal
variance, so that the perturbations project equivalently
onto each singular vector. To see this, let U be the matrix
whose columns are the initial SVs for the norm defined
by S. Since the SVs are orthogonal with respect to this
inner product, UTSU 5 I. Let x be a random vector with
distribution N(0, S21), so that ^xxT& 5 S21 where ^·&
denotes the expected value. Now project x onto the
initial singular vectors; that is, write x 5 Ua for a vector
a of projection coefficients. Then U ^aaT&UT 5 S21 and
multiplication by UTS on the right and by SU on the
left gives ^aaT& 5 I.

3. The reference solution

Although our primary interest in what follows will
be the behavior of small perturbations to this state, we

pause here to document general characteristics of the
reference solution. The reference integration uses the
parameters given above and begins at t 5 2240 days
with a localized disturbance in at z 5 1 superposedq
on the ‘‘relaxed’’ zonal state (specified by qe). Following
the spinup of a statistically steady, turbulent state, the
reference solution is taken to be the solution for 0 , t
, 200 days.

The flow at any instant, an example of which is shown
in Fig. 1, is qualitatively similar to that of the midlat-
itude troposphere. It is characterized by a meandering,
baroclinic westerly jet, whose speed increases from the
surface to the model lid. The large-amplitude waves,
which typically have zonal wavenumber between 2 and
4 (in units of cycles per domain length, or dimensional
wavelength between 4000 and 8000 km), propagate
along the jet from west to east and frequently break to
form cutoff vortices. Examination of Hovmöller dia-
grams for meridional velocity at the lid (not shown)
reveals that the waves are also frequently organized into
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FIG. 2. Time-averaged power spectra of kinetic energy for the
reference solution at y 5 yL/2, z 5 1. The dotted line shows the
spectrum from a run with doubled resolution and n reduced by a
factor of 8.

packets, much as occurs in the atmosphere and in other
simplified primitive equation and quasigeostrophic sim-
ulations (Lee and Held 1993). Since the forcing and
dissipation operators are zonally symmetric, all zonal
asymmetries are produced internally by the dynamics.

The structure of the (generalized) potential vorticity
is of particular interest. In at top and bottom (Figs.q q

1a,c), strong horizontal gradients are concentrated in a
narrow zone that follows the meandering jet; this is
particularly evident at the lid, where the gradients are
largest and most coherent. At midheight (z 5 0.5; Fig.
1b), there is little systematic organization in the hori-
zontal gradient of , and the general appearance is ofq
a tracer being mixed in the center of the channel.

The observed troposphere has similar structure in PV.
At the surface, horizontal gradients in u (and thus of
generalized PV) are largest in a zone that follows the
jet, while PV gradients are weak and have little orga-
nization in the interior of the troposphere, at least away
from regions of strong ascent and latent heating. By far
the strongest gradients are to be found at the sloping
tropopause in a narrow zone that again follows the jet
(Hoskins et al. 1985), much as in Fig. 1 if we interpret
the model’s lid to represent the tropopause.

The relative strength of gradients at the surface andq
lid in the reference solution means that PV anomalies
on the boundaries (with respect to, say, a zonal average)
are typically larger than interior PV anomalies. In fact,
the flow associated with the boundary PV anomalies,
obtained by inverting (2), has rms velocities that are
more than twice that associated with the interior anom-q
alies. Inversion of observed PV anomalies yields similar
results (Davis 1992).

The time-mean energy cycle is also qualitatively sim-
ilar to that of the atmosphere (Peixoto and Oort 1992,
their Fig. 14.8), and illustrates the nature and mainte-
nance of the reference solution. As in the atmosphere,
deviations from the zonal mean (eddies) draw potential
energy from the zonal-mean flow via baroclinic con-
version, while the eddies transfer kinetic energy to the
mean flow through barotropic conversion. The mean
flow is driven by the relaxation, which generates both
mean kinetic and potential energy at the same time it
damps the eddies. Consistent with this driving, the time-
and zonal-mean jet has maximum speed that is 7/10 of
the maximum ue (or about 40 m s21). Ekman pumping
is also a significant sink of both mean and eddy kinetic
energy, while the explicit smoothing has a negligible
direct influence on the energy cycle.

The kinetic energy spectrum (Fig. 2) is another tra-
ditional diagnostic for turbulent flows. Since the flow
is statistically homogeneous only in x, we compute the
one-dimensional spectrum for zonal Fourier components,
evaluated at midchannel and on the lid (y 5 yL/2, z 5 1).
As was evident from Fig. 1, the energy-containing range
encompasses the longest waves in the channel, with a
peak at wavenumber 3. There is also a well-defined
inertial range, in which kinetic energy obeys a power-

law decay with a spectral slope somewhat shallower
than 23. Atmospheric observations exhibit spectra with
inertial ranges having similar power laws (Boer and
Shepherd 1983); any quantitative agreement with these
quasigeostrophic results, however, is probably fortu-
itous.

We have also briefly examined the sensitivity of the
reference solution to model parameters and resolution.
Doubling the resolution and reducing the smoothing co-
efficient n by a factor of 8 has little effect on the energy-
containing scales, as might be expected from the neg-
ligible role of the numerical smoothing in the energy
budget, but has a profound effect at the smallest scales,
as would be predicted by the theory of two-dimensional
turbulence. Both results are evident in Fig. 2, where the
kinetic energy spectrum at doubled resolution is indi-
cated by a dotted line. In the physical coordinates, gra-
dients in PV and boundary u increase substantially at
doubled resolution while the larger-scale character of
the solution is unchanged.

There is little sensitivity to varying other parameters
except b. Doubling or halving either the strength of the
Ekman pumping or the relaxation timescale, produces
little qualitative change in the solution. A doubling of
b, however, leads to solutions in which wave packets
are more frequent and coherent; a further doubling pro-
duces an almost periodic solution consisting of a single
wave packet recirculating through the channel (see Lee
and Held 1993).

4. Covariance evolution

As discussed in section 2c, the ensemble of pertur-
bations is initialized as a random sample from a spec-
ified Gaussian distribution. Evolution under the line-
arized dynamics then modifies the ensemble and its sta-
tistics. This section examines how the ensemble statis-
tics change from their initial conditions, the relation of
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FIG. 3. The square root of total perturbation energy, normalized
by its value at D t 5 0, as a function of D t. The short, sloping
line segment shows growth at the rate of the leading Lyapunov
exponent.

FIG. 4. Area-averaged perturbation total energy E(z) and potential
enstrophy Q(z) at Dt 5 0 (dotted lines), 20 h (solid), 2 days (solid),
and 4 days (thick solid). After Dt 5 0, E increases at each Dt shown,
while Q in the interior of the troposphere decreases monotonically
at each Dt shown. Thick gray lines indicate the time-averages of E(z)
and Q(z) for deviations of the reference state from its time mean;
each has been scaled for display so that its vertical integral is the
same as that of the corresponding perturbation quantities at Dt 5 4d.
Perturbation results are averaged over an ensemble of 10 perturbations
and over 10 initial times.

those changes to the reference flow, and the timescale
over which they occur. Most of the results are not sen-
sitive to the initial ensemble statistics, so we will con-
centrate on the energy ensemble, except in section 4d
where a number of other ensembles are discussed.

a. Averaged characteristics

Results in this subsection (and ‘‘averaged’’ results
elsewhere) are computed as averages over both ensem-
bles of initial perturbations and over 11 initial times
from t 5 0 to t 5 100 days at intervals of 10 days.
Except where noted, each ensemble has 100 members.

The behavior of the perturbation energy as a function
of time is shown in Fig. 3, averaged over the ensemble
and over initial times. For the first day, the energy de-
cays. This initial decay is follow by amplification that
becomes exponential for t . 3 days, with a rate that
closely approximates the leading Lyapunov exponent of
0.8 day21 (SH). Note that steady exponential growth is
not seen in integrations from a single initial time, but
rather arises from averaging over initial times.

The initial decay is tied to the dissipation in the mod-
el. If the adiabatic dynamics are ignored in (8) and the
perturbations allowed to evolve under the influence of
the Ekman pumping, relaxation, and numerical smooth-
ing alone, then the initial decay is barely altered, as
indicated by the dotted curve in Fig. 3. In addition, the
decay diminishes or disappears if the smallest horizontal
scales are truncated from the initial perturbations, that
is, if waves with (k2 1 m2)1/2 . kc have their amplitudes
set to zero. The cases kc 5 16, 32 are shown in Fig. 3.
Wirth and Ghil (2000) document similar initial decay
of perturbations in a primitive equation ocean model
and discuss the relation of the decay to the model’s
dissipation. A more complete discussion of the role of
the dissipation is deferred to section 6.

It is clear from Fig. 3 that by t 5 1 day the dissipation

no longer controls the perturbation evolution, as all the
experiments that include the adiabatic dynamics behave
similarly by this time. There follows a transient period
of growth out to t ø 3 days, after which the long-term
exponential growth begins. This timescale of 1–3 days
for the transient adjustment of the ensemble properties
under the influence of the dynamics will be seen re-
peatedly in what follows.

The timescale that would be inferred from Fig. 3 is
largely independent of the norm chosen to quantify the
perturbation amplitude. Measuring the perturbations in
either the squared streamfunction or potential enstrophy
merely alters the details of the transient period (not
shown). For example, squared streamfunction, which
gives little weight to the small scales that are strongly
dissipated, exhibits little decay, while the decay of po-
tential enstrophy is greater than that in Fig. 3. Regard-
less of the norm, however, the averaged growth becomes
nearly exponential after t 5 3 days.

The variation of the perturbation amplitude with
height, and its evolution in time, are illustrated by Fig.
4, which shows the area-integrated energy and potential
enstrophy at t 5 0, 20 h, 2 and 4 days after the ini-
tialization of the ensembles. Results are again averaged
over ensembles and over initial times.

The energy at initial times is uniform with height to
within sampling error, while the enstrophy has weak
minima at the first and last grid levels. Consistent with
Fig. 3, both quantities decay substantially over the first
day and then begin to increase. As the perturbations
evolve, the energy develops a peak at the model lid and
a minimum in the mid- to lower troposphere. The de-
velopment of the potential enstrophy is more dramatic;
initial decay is accompanied by growth at both upper-
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FIG. 5. Spectra of perturbation kinetic energy at y 5 yL/2, z 5 1
at various times. Shown are Dt 5 0 (dotted line), 20 h, 1 day, 2 days
(solid lines; larger kinetic energy corresponds to larger Dt). Results
are averaged over an ensemble of 10 perturbations and over 10 initial
times.

and lowermost levels, with the enstrophy at the upper-
most level exceeding that in the interior by two orders
of magnitude after 4 days. The energy and enstrophy
profiles by 4 days are both similar to those for the lead-
ing Lyapunov vector (SH, see their Fig. 2) and for anal-
ysis errors in this system (Hamill et al. 2002, their Figs.
6, 7). Beyond 4 days, the profiles’ shape changes little
although their growth continues (not shown).

Thus, on average the perturbations evolve from hav-
ing PV distributed throughout the troposphere to having
PV concentrated at the upper and lower boundaries. The
distribution of energy with height reflects a smoothed
version of this process, consistent with (2). As noted in
section 3, the reference solution has similar properties,
with relatively weak PV in the interior and winds max-
imized near either boundary; this is shown in Fig. 4 by
the thick gray curves, which represent the profiles for
deviations in the reference state from the time and zonal
mean.

Finally, consider the evolution of the horizontal scale
of the perturbations. Figure 5 displays the power spec-
trum of kinetic energy at the center of the channel as a
function of zonal wavenumber. Initial decay is strongest
at small scales, consistent with dissipation (particularly
the numerical smoothing) causing the decay. Growth
begins first at wavenumbers less than 10, which contain
the most energy in the reference-state flow. By t 5 2
days, the shape of the spectrum becomes fixed and
growth occurs systematically at all scales, again indi-
cating a timescale of 1–3 days for the perturbations to
approach their asymptotic properties. The asymptotic
spectrum decays with wavenumber more slowly than
the reference-state spectrum (Fig. 2), much like the
spectrum of the leading Lyapunov vector (SH, their Fig.
3).

b. Adjustment to =q

To this point, we have seen that the growth of per-
turbations becomes on average, exponential following
a transient period of 1–3 days, and that this same tran-
sient period is associated with changes from the initial
spatial structure (implied by the chosen covariance ma-
trix C) to dynamically determined structure whose char-
acteristics are largely independent of the initial condi-
tions. In particular, perturbations evolve to have PV con-
centrated at the top and bottom boundaries (with little
PV in the interior of the flow), the perturbation velocities
become concentrated at top and bottom as well, and
perturbations develop a characteristic horizontal spec-
trum that decays with wavenumber but is less steep than
the reference-state spectrum.

The growth of PV perturbations at top and bottom
shown in Fig. 4 is striking, particularly when compared
to the steady decay in the interior over the same time
interval. To gain more insight into this behavior and
into the perturbation dynamics in general, we examine
next the evolution of the perturbation variance for a
specific initial time, t 5 120 days.

Figure 6 displays the PV variance at the uppermost
level for an ensemble with initial perturbations drawn
from the distribution implied by the energy norm. The
variance is shown at Dt 5 5, 10, and 20 h. The initial
variance (not shown) is nearly uniform over the domain
except for sampling error.

Two points are noteworthy. The first is the rapid emer-
gence of structure in the PV variance as the perturba-
tions evolve. This structure emerges through growth of
the variance in a narrow, meandering band in the central
portion of the channel, and decay elsewhere. The second
point is the remarkably simple relation of that structure
to the reference-state flow: large PV variance develops
where the horizontal gradient of reference-state PV is
large. This relation can be seen by comparing Fig. 7,
which shows | = | , with Fig. 6c. A similar tendencyq
for large variance where reference-state vorticity or PV
gradients are large has been noted previously in other
simple models (Gauthier et al. 1993; Tanguay et al.
1995; Fischer et al. 1998).

The perturbation PV variance in the interior develops
structure on a similar timescale, as illustrated by Fig.
8a, which shows the fifth model level at Dt 5 40 h.
The spatial variations in variance are again clearly re-
lated to | = | at the same level (Fig. 8b). In contrastq
to behavior at the lid, however, PV variance tends to be
small (rather than large) where the reference-state PV
gradient is large. In addition, PV variance in the interior
decays on average (the grayscale in Fig. 8 is reduced
by a factor of 10 relative to Figs. 6 or 7), whereas there
is significant growth of variance at the lid in regions of
large | = | .q

The relation of the PV variance to the reference-state
PV gradients is generic and holds for ensembles ini-
tialized at other times as well. The correlation of Var(q9)
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FIG. 6. The variance of the generalized q9 at the uppermost
model level for an ensemble initialized at t 5 120 days. The
variance is shown after time intervals of D t 5 5, 10, and 20 h
[(a), (b) and (c), respectively] and shaded so that white corre-
sponds to zero variance and the darkest gray to the maximum
variance in (c).

FIG. 8. (a) The variance of q9 at the fifth model level for an ensemble
initialized at t 5 120 days and a time interval Dt 5 40 h, and (b)
| = | on the fifth model level at the time shown in (a) (i.e., t 5 120q
days 1 40 h). Shading in (a) and (b) is as in Figs. 6b and 7, re-
spectively, except that the value of the fields corresponding to a given
gray shade is reduced by a factor of 10.

FIG. 7. The value | = | on the uppermost model level at the sameq
time shown in Fig. 6c (t 5 120 days 1 20 h). The field is shaded
so that white corresponds to zero gradient and the darkest gray to
the maximum gradients.

FIG. 9. The correlation of the variance of q9 and | = | as a functionq
of time. Correlations are shown for the surface and lid (bold curves;
surface, dash–dot lines) and for levels 3 and 5 in the interior (thin
curves; level 3, dash–dot). Results are averaged over an ensemble of
10 perturbations and over 10 initial times.

and | = | at several levels is shown in Fig. 9 as aq
function of Dt, averaged over initial times. The PV var-
iance rapidly correlates with | = | at both the top andq
bottom levels, reaching a maximum near Dt 5 1 day
and then asymptoting to a value between 0.5 and 0.6.
In the interior, the PV variance develops a negative cor-
relation with the strength of the reference-state gradient
over the first two days, which then reverses and ap-
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FIG. 10. Eigenvalues li of the sample covariance matrix P for 100-
member ensembles, normalized by the total variance [i.e., Tr(P) 5
S li] and averaged over initial times. Eigenvalues are shown for Dt
5 0, 20 h, 2 days, and 4 days; the leading eigenvalue increases
monotonically with Dt. Dotted lines show results from 400-member
ensemble for Dt 5 2 days and 4 days.

proaches a positive value comparable to that at top and
bottom.

The perturbation dynamics, including the reasons for
the differing behaviors in the interior and at the bound-
aries and the role of the model’s dissipation, are dis-
cussed in more detail in section 6.

c. Covariance evolution

Up to this point we have concentrated on the evo-
lution of variances. The spatial (auto) covariances are,
of course, also of interest. This section examines the
evolution of both global properties of the sample co-
variance matrices from the ensembles and the local spa-
tial structure of the covariances.

The sample covariance matrix P is given by P 5
(Ne 2 1)21XXT, where Ne is the ensemble size and X is
the matrix whose Ne columns are the gridpoint PV val-
ues of the ensemble members. Since the number of its
elements scales as the square of the number of grid
points, P is too large to manipulate or store even for
the QG model, but its Ne 2 1 nonzero eigenvalues are
the singular values of (Ne 2 1)21/2X and can thus be
calculated by singular value decomposition of X.

Averaging over initial times, these eigenvalues are
shown in Fig. 10 for Dt 5 0, 20 h, 2 and 4 days. In
the figure, each eigenvalue l i is normalized by Tr(P) 5
S li, so that they represent the percentage of the total
variance accounted for by each eigenvector of P.

The eigenvalue spectrum steepens as Dt increases and
the ensemble evolves. This steepening again occurs on
a timescale of O(1 day). The steepening means fewer
structures account for a greater percentage of variance
within the ensemble; after 2 days, for example, the first
10 eigenvectors explain 43% of the variance. This is

consistent with the rapid appearance of spatial variations
in variance as in Fig. 6.

Unlike the other results shown to this point, the sam-
ple eigenvalues are subject to noticeable sampling error,
particularly soon after the ensemble is initialized. We
have repeated the calculations with the ensemble size
increased by a factor of 4 (Ne 5 400) to quantify the
magnitude of the sampling error.

At Dt 5 0, the eigenvalues are approximately equal
for Ne 5 100 (Fig. 10), and quadrupling the ensemble
size decreases does not alter this property (not shown).
Thus, the initial (normalized) eigenvalues are all ap-
proximately and changing the ensemble size has a21N e

profound effect on any individual eigenvalue. This is a
property of sampling in high-dimensional systems: if
the ensemble is sufficiently small, and the covariance
matrix C from which the ensemble is sampled has a
spectrum that is not too steep, then the ensemble mem-
bers are, with high probability, nearly orthogonal. At
Dt 5 20 h, the situation is simlar, but less severe; in-
creasing Ne to 400 (not shown) steepens the spectrum
significantly and decreases the leading eigenvalue by
half. Results for Dt 5 2 and 4 days are shown with
dotted lines in Fig. 10. By these times, the leading ei-
genvalues show little sensitivity to the ensemble size.
Clearly, the sampling errors in the sample eigenvalues
decrease dramatically as the ensemble evolves and the
spectrum steepens, but unfortunately little theoretical
guidance is available to help quantify this dependence.

As shown in the companion paper (Hamill et al.
2002), the spectra of sample analysis- and forecast-error
covariance matrices in this system are also steep, rather
than flat, again reflecting the influence of the forecast
dynamics on such errors. In addition, the steep spectra
of the analysis-error covariance illustrates that the initial
energy ensemble has little relation to analysis errors, as
first suggested in section 2c.

We next turn to the evolution of the spatial structure
of the covariances (or correlations) and again focus on
q9 at the uppermost model level. An example is given
in Fig. 11, which shows two-point correlation fields at
times Dt 5 10, 20, and 40 h following the initialization
of the ensemble with 100 members at t 5 120 days.
Because the correlations are spatially localized, multiple
subdomains (the small square boxes) are shown, each
of which displays the correlation of q9 at the center of
that subdomain with q9 at surrounding points. Each sub-
domain covers an array of 21 3 21 grid points, or an
area of 25002 km2.

We have checked the magnitude of sampling errors
in Fig. 11 by computing the correlations using an en-
semble of 400 members. Although the details of the
result change with the larger ensemble, particularly
where the correlations are weak, the stronger, short-
range correlations are not sensitive to the ensemble size;
the rms value of the difference between the 100- and
400-member correlations is 0.091, 0.077, and 0.085 at
Dt 5 10, 20, and 40 h, respectively. Sampling errors of
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FIG. 11. Two-point correlations for q9 at the uppermost model level
at three intervals after initialization: Dt 5 10, 20, and 40 h [(a), (b),
and (c), respectively]. In each of the smaller square subdomains,
contours are shown for the correlation of q9 at the center of the box
with q9 at other locations in the box; these correlations are based on
an ensemble of 100 members initialized at t 5 120 days. Contour
values are 60.75 and 60.25, with dotted lines indicating negative
values. The centers of the subdomains are chosen to be equally spaced
in x and to coincide with the maximum variance of q9 at the zonal
location. Contours of at the same times (t 1 Dt) are shown in thickq
gray lines.

this magnitude are consistent with the results of Hou-
tekamer and Mitchell (1998, their Fig. 7) and theory,
which predicts sampling errors that are O( ).21/2N e

As was the case for the variances (Fig. 6), the cor-
relations evolve on a timescale of 1–2 days and their
evolution appears to bear a strong relation to the ref-
erence-state PV. After 10 h (Fig. 11a), the correlations
have become anisotropic and typically are strongest
along the contours of . This tendency becomes pro-q
nounced by 20 h (Fig. 11a), with strong correlations
extending several hundred kilometers along contoursq
while short-range correlations parallel to = are oftenq
negative. The regions of strongest correlations are typ-
ically narrow bands that curve to follow the contours;q

the correlation structure can be complicated, particularly
in regions where has a complicated, layered form. Atq
40 h (Fig. 11c), the typical correlation length along the
reference-state PV contour is comparable to the length
scale of the baroclinic waves in the reference state, so
that strong correlations often extend from ridge to
trough and beyond the bounds of the subdomains shown.
The increase of the correlation length is consistent with
increase in scale of the perturbations over the first 1–2
days (Fig. 5).

This evolution of the perturbation correlations does
not fit the picture of small-scale instabilities developing
on a slowly varying large-scale flow, since the devel-
opment of the perturbations does not produce small-
scale structure. Instead, the perturbations quickly as-
sume the reference-state length scales, at least in the
direction along contours, and represent shifts or dis-q
tortions of existing reference-state features. Snyder
(1999) and Snyder and Joly (1998) discuss simple mech-
anisms that can lead to such development.

Although the relation of the correlations to the ref-
erence-state PV is difficult to quantify once the spatial
structure of the correlations becomes sufficiently com-
plicated (as in Fig. 11c), insight into the initial devel-
opment of anisotropic correlations can be gained
through a simple diagnostic. [Bouttier (1993, p. 413)
uses much the same diagnostic and provides further dis-
cussion of its formulation.] At each point (x0, y0) whose
variance is in the top 10% at a given model level, we
compute the correlation C(x, y; x0, y0) of q9(x, y) with
q9(x0, y0) and then calculate a local orientation from
C(x, y; x0, y0) as follows. First, values of the correlation
less than 0.25 are set to zero; this avoids complications
in interpreting the results when some local correlations
are negative and makes the diagnostic more robust.
Then, the moments

2a(x , y ) 5 (x 2 x ) C(x, y; x , y ) dA,0 0 E 0 0 0

2b(x , y ) 5 (y 2 y ) C(x, y; x , y ) dA,0 0 E 0 0 0

c(x , y ) 5 (x 2 x )(y 2 y )C(x, y; x , y ) dA,0 0 E 0 0 0 0

are calculated as summations over the 11 3 11 array
of grid points centered at (x0, y0). Finally, the local
orientation is defined by the vector [2c, 2(a 2 b) 1
((a 2 b)2 1 4c2)1/2]. If C(x, y; x0, y0) is constant along
concentric ellipses of fixed orientation in the (x, y) plane,
then this vector lies parallel to the ellipses’ major axes.

Figure 12 shows the probability distribution, averaged
over initial times, for the angle between = and theq
local orientation of the correlation at the top model level.
The evolution of the probability density function (pdf )
confirms that the behavior shown in Fig. 11 is generic.
Although they are initially nearly isotropic, the local
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FIG. 12. Probability density function of the angle between = andq
the local orientation of the spatial autocorrelation of q9 at the up-
permost model level. Each curve is labeled with Dt.

correlations develop significant anisotropy within the
first day and, by 2 days, the orientations of the corre-
lation is overwhelmingly along contours of (and nor-q
mal to = , so that the angle displayed in Fig. 12 isq
approximately p/2). The dynamics that lead to the de-
velopment of anisotropy are discussed in section 6.

Finally, we note that these results provide some jus-
tification for existing, empirical models of the flow de-
pendence of forecast-error covariances. Riishøjgaard
(1998) proposes a correlation model in which error cor-
relations are enhanced along isolines of the analyzed
variable; such a model will provide correlations that are
qualitatively similar to Fig. 11, where the correlation of
PV perturbations tend to follow contours of the refer-
ence-state PV. To the extent that the relation (2) results
in streamlines that follow PV contours, Fig. 11 is also
qualitatively consistent with models that enhance cor-
relations in the direction of the local flow, such as Ben-
jamin and Seaman (1985).

d. Other initial ensembles

It is natural to ask how the initial statistics of the
ensemble influence the results presented earlier. In ad-
dition to the energy ensemble, we have also computed
the diagnostics of sections 4b and 4c (except for that
shown in Fig. 12) for four other initial ensembles: the
potential-enstrophy and streamfunction ensembles, and
the two truncated energy ensembles (kc 5 16 and 32)
discussed in relation to Fig. 3.

These initial ensembles span a range of possibilities.
In the potential-enstrophy ensemble, the largest vertical
and horizontal scales have greater (expected) amplitude,
and the smaller scales smaller amplitude, relative to the
energy ensemble. The streamfunction ensemble has the
opposite relation to the energy ensemble, with a flatter
power spectrum and more amplitude in the smallest
scales. The truncated energy ensembles resemble the

enstrophy ensemble in that their velocity fields are dom-
inated by large scales, but differ in that small vertical
scales are retained.

Despite these differences, the evolution of all five
ensembles agrees in important respects. First, each en-
semble develops qualitatively similar characteristics,
such as potential enstrophy that is strongly peaked at
the top and bottom boundaries (as in Fig. 3), strong
correlation between Var(q9) and | = | (as in Fig. 9),q
and a steep eigenvalue spectrum for the sample co-
variance matrix (as in Fig. 10). Second, these charac-
teristics develop on the same timescale of 1–3 days
found for the energy ensemble.

Some details of the initial evolution, of course, differ
among the ensembles. Because it is controlled by the
dissipation small scales (see section 4a and Fig. 3), the
initial decay of the perturbations depends sensitively on
the relative amplitudes of small and large scales in the
ensemble. Thus, the streamfunction ensemble, with
more amplitude in small horizontal scales, exhibits a
greater initial decay of energy than that shown in Fig.
3, while the potential-enstrophy ensemble decays less
rapidly. The development of correlation between Var(q9)
and | = | is also slightly slower and the steepening ofq
eigenvalue spectrum is weaker for the streamfunction
ensemble than the energy ensemble, and the potential-
enstrophy or truncated energy ensembles again have the
opposite behavior, with more rapid development of the
correlation between Var(q9) and | = | and a steeperq
eigenvalue spectrum. We emphasize, however, that these
are differences in detail and, in all cases, the gross char-
acteristics of the ensemble are similar after 3–4 days
regardless of their initial statistics.

The fact that the qualitative characteristics of the en-
semble become insensitive to its initial statistics is con-
sistent with the behavior of the leading singular vectors
over similar time intervals in other studies. For example,
Palmer et al. (1998) show that, while the initial structure
of the leading singular vectors depends strongly on the
choice of norm, their evolved structure after 2 days is
relatively insensitive to that choice. (Recall from section
2c that specifying the initial statistics of the ensemble
corresponds to choosing the initial-time norm in a sin-
gular-vector calculation.)

5. Convergence to the leading Lyapunov vectors

As noted in the introduction, there is a considerable
body of dynamical-systems theory applicable to our en-
semble experiments in the limit Dt → `. In particular,
almost any ensemble of N perturbations converges in
that limit to the subspace spanned by the N leading
Lyapunov vectors, which vary in time but depend only
on the reference solution (and the inner product chosen
to calculate projections). The fate of the ensemble is
thus, at least asymptotically, largely determined by its
dynamical evolution and independent of its initial sta-
tistics. Legras and Vautard (1995) provide further back-
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FIG. 13. Fraction of the sample variance explained by the first 20
Lyapunov vectors as a function of Dt. Results are shown for 10 initial
times (dotted lines) and for the average over initial times (solid). The
sample variance is calculated in terms of total energy.

ground and references on Lyapunov stability of dynam-
ical systems.

It is not obvious that the asymptotic properties defined
by the leading Lyapunov vectors should be relevant to
the ensembles considered here, where Dt is not large.
Note, however, that the many properties of the pertur-
bations after a day or two do resemble the gross structure
of the leading Lyapunov vectors for this system as doc-
umented by SH. These properties include horizontal
scales comparable to that of reference state, perturbation
PV concentrated at the upper and lower boundaries,
significant spatial correlation between squared pertur-
bation PV and | = | , and much longer (auto) correla-q
tion lengths along contours than normal to them. Thisq
similarity suggests that there has been substantial con-
vergence toward the leading Lyapunov vectors even af-
ter 1–2 days.

A simple measure of the ensembles’ convergence to
a given subspace is the fraction of variance explained
by that subspace. This is calculated by projecting each
perturbation onto the subspace and comparing the var-
iance of the projection with that of the original ensem-
ble. Here, the subspace will be defined by the first 20
Lyapunov vectors and projections are based on the total-
energy inner product. The fraction of variance is shown
as a function of Dt in Fig. 13, both for 10 specific initial
times (dotted lines) and averaged over those initial times
(solid).

The variance explained by the first 20 Lyapunov vec-
tors initially increases rapidly, reaching about 0.8 by
after 2.5 days, and then asymptotes more slowly to 1
at longer times. Clearly, the timescale of 1–2 days for
the initial, transient evolution of the ensemble is com-
parable to that for the convergence of the ensemble
perturbations to the subspace spanned by the leading
Lyapunov vectors (or more generally, to the unstable
manifold defined by the Lyapunov vectors with positive

exponents), and the Lyapunov vectors contain consid-
erable information about the ensemble even on time-
scales relevant to numerical weather prediction.

This timescale for the emergence of significant pro-
jection on the leading Lyapunov vectors is consistent
with results from other quasigeostrophic studies. Swan-
son et al. (1998) find that, at the end of a 5-day interval
of four-dimensional variational assimilation, roughly
one-half of the analysis-error variance is explained by
the first 100 Lyapunov vectors. In addition, Reynolds
and Errico (1999) have shown that the leading Lyapunov
vector has a strong projection on the subspace of the
first 30 evolved singular vectors even for optimization
times of 5 days.

An additional point is that the strong convergence
shown in Fig. 13 requires projecting on not just the
single leading Lyapunov vector, but on a subspace
spanned by many Lyapunov vectors. Even at Dt 5 8
days, the perturbations have not converged to the single,
most rapidly growing Lyapunov vector. Instead, the pro-
jection is spread over the entire subspace; at Dt 5 8
days, the first, third, and fifth LVs on average account
for 25%, 14%, and 10% of the variance.

6. Perturbation dynamics

To this point, we have seen that the growth of per-
turbations becomes on average, exponential following
a transient period of 1–3 days, and that this same tran-
sient period is associated with changes from the initial
spatial structure (implied by the chosen covariance ma-
trix C) to a dynamically determined structure whose
characteristics are largely independent of the initial con-
ditions. In particular, perturbations evolve to have PV
concentrated at the top and bottom boundaries (with
little PV in the interior of the flow); on those boundaries
the perturbation PV becomes strongly correlated with
the magnitude of the reference-state PV gradients, and
anisotropic covariances develop, with the strongest spa-
tial correlations extending along contours of the refer-
ence-state PV. This section examines the dynamics that
give rise to such behavior.

a. Role of =q

We begin by examining the reasons for the strong
relation of the perturbations to the reference-state PV
gradient and, in particular, why that relation differs from
the upper and lower boundaries to the interior.

The perturbation dynamics are governed by (8). Aside
from relaxation and dissipation, perturbation PV evolves
through two processes: the advection of q9 by the ref-
erence-state flow and the advection of = by the per-q
turbations. An evolution equation for Var(q9) can be
derived by multiplying (8) by q9 and taking expected
values, which yields
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(] 1 v · =) Var(q9) 1 2^v9q9& · =qt

5 2Var(q9)/t 1 ^q9Dq9&, (9)

where ^·& denotes the expected value and the pertur-
bations are assumed to have zero mean.

The reference-state advections simply rearrange the
variance field, while the relaxation and (typically) the
dissipation are sinks for Var(q9). The advection of
| = | by the perturbations in (8) gives rise to a sourceq
for Var(q9) where = ± 0 and there is a downgradientq
PV flux (^v9q9& and = oppositely directed). This sourceq
is clearly crucial to the evolution of Var(q9) at the top
and bottom boundaries, since Var(q9) grows and is con-
centrated where = is large (Fig. 6). Both Thompsonq
(1986) and Evensen (1992) also identify the interaction
of the error velocities with the reference-state PV gra-
dients as the key process in the evolution of initially
isotropic errors.

The different evolution of Var(q9) at the boundaries
as compared to the interior arises from differences in
the source term between different levels. At the upper
and lower boundaries, | = | is large compared to itsq
value throughout the interior of the flow, in terms of
both local maxima and net cross-channel change. The
initial amplitude of either q9 or v9, in contrast, varies
little with height. Thus, other things being equal (such
as the anisotropy of the covariances, which leads to
nonzero ^v9q9&), the source term for Var(q9) will be larg-
est at the boundaries. Examination of each term in (9)
in the early stages of the numerical solutions (not
shown) confirms that, at top and bottom, the source term
controls the evolution of Var(q9) wherever | = | isq
large, while the dissipation dominates elsewhere.

In the interior, the reference-state PV gradients are
weak enough that the source term is of secondary im-
portance and q9 behaves as a passive scalar that is ad-
vected and dissipated. (Note from Figs. 7 and 8b that
the largest interior gradients are more than a factor of
20 smaller than at the lid, while Fig. 4 indicates that
perturbation velocities decrease by little more than a
factor of 2 from the lid to the interior.) Ignoring dis-
sipation for the moment, such a scalar field will develop
smaller and smaller scales with time as material lines
are deformed and stretched by the advecting flow, and
this development of small scales will occur preferen-
tially where the flow has largest strain. There is then
enhanced dissipation in these regions, leading to the
development of spatial structure in Var(q9) [Fig. 8; see
Fig. 5 of Evensen (1992) for a similar result]. Because
the same straining flow also advects the reference-state
PV and typically increases its gradient, regions of large
strain also correspond, to a first approximation, to re-
gions of large | = | . Thus, the interior perturbationsq
evolve over the first 1–2 days so that Var(q9) and
| = | are anticorrelated (Figs. 8,9).q

After 4–6 days, however, this relation reverses and
Var(q9) in the interior becomes correlated with | = |q

as at the boundaries (Fig. 9). This is because the variance
decays in the interior while growing at the boundaries
(Fig. 4); v9 in the interior is then determined by the
perturbation PV at the boundaries rather than that in the
interior, and does not decay. In this regime, the source
term becomes important in the interior, since the vari-
ance is now very small, and Var(q9) begins to correlate
positively with | = | . The small amount of interior q9q
and its structure are in any case not central to the be-
havior of the perturbations at this stage, but instead are
driven by the evolution of q9 at the boundaries.

b. Role of dissipation

Given that the initial decay of the perturbation energy
occurs on a timescale similar to that for the covariance
evolution, and that initial decay is controlled by the
dissipation, it is natural to ask the extent to which the
dissipation also contributes to aspects of the covariance
evolution, such as the emergence of spatial variations
in Var(q9). We will focus on the role of the numerical
smoothing, as this is both the dominant and most poorly
justified contributor to dissipating the PV.

First, it is clear that the dissipation does not directly
control the covariance evolution, even for small Dt. If
the ensembles are evolved subject only to the dissipation
[ignoring the advective terms in (8)], the perturbations
develop none of the characteristic structure seen pre-
viously (e.g., in Figs. 4, 5, 6, 9, and 11). Moreover, if
small scales are truncated from the initial ensemble
(kc 5 16, as in Fig. 3) so that the numerical smoothing
is initially a small effect, spatial variations appear even
more rapidly in the PV variance (not shown).

A more direct test of the influence of the numerical
smoothing is to repeat the experiments described in sec-
tion 4 with the model resolution doubled and n reduced
by a factor of 8. To allow a direct comparison with
results in section 4, the ensemble perturbations for these
doubled-resolution experiments are drawn from the
same population as in the original experiments; that is,
the perturbations have power only at scales resolved in
the original experiments.

The principal difference in results is that the initial
decay of the perturbation energy is greatly reduced at
doubled resolution (not shown). While the energy again
reaches a minimum after about 20 h, it is reduced at
doubled resolution by only 20% relative to its initial
value (as opposed to a reduction of almost a factor of
3 in Fig. 3). This weaker initial decay again shows, as
in Fig. 3, that the dissipation controls the decay—the
perturbations have the same scales as in the original
experiment but the numerical smoothing is reduced by
a factor of 8 at doubled resolution, so the initial decay
of the perturbation is slower.

In other respects, the perturbation evolution is quali-
tatively unchanged: the potential enstrophy still grows rap-
idly at the boundaries while decaying in the interior (as
in Fig. 4), perturbations still develop an energy spectrum
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FIG. 14. As in Fig. 9 but for the experiments at doubled resolution.

that peaks around wavenumber 5 (as in Fig. 5), and Var(q9)
again has a strong correlation with | = | . This last pointq
is illustrated by Fig. 14, which shows the correlation of
Var(q9) and | = | as a function of Dt for the doubled-q
resolution experiments and should be compared with Fig.
9. Thus, consistent with our arguments in section 6a earlier,
it is the advective dynamics, and not the dissipation, that
controls the covariance evolution.

7. Summary and discussion

We have adopted an experimental approach to un-
derstanding the dynamics of forecast-error covariances.
Because of the difficulty of this problem, our exploration
has been limited to linear dynamics.

The experiments begin with a quasigeostrophic simu-
lation of statistically steady, turbulent flow driven by re-
laxation to an unstable baroclinic jet. This reference flow
consists of a strong jet disturbed by baroclinic waves and
qualitatively resembles midlatitude tropospheric flow. En-
sembles of perturbations are then drawn from a Gaussian
distribution with (nearly) homogeneous and isotropic co-
variance matrix, and evolved under dynamics linearized
about the reference solution. The sample covariances based
on these ensembles provide estimates of the true covari-
ance evolution arising from the specified initial covari-
ances. Because the results are based on a dry, quasigeo-
strophic model, we expect them to be applicable quali-
tatively, but probably not in detail, to flows at synoptic
and larger scales in primitive equation models.

The linear dynamics impose significant structure on
the perturbations and their covariances on a timescale
of roughly a day. This timescale, which is comparable
to the advective timescale for the reference flow, defines
an initial, transient period during which the perturba-
tions and their covariances tend to a characteristic form
that is insensitive to the specified initial covariances.

In terms of perturbations’ gross structure, the poten-
tial enstrophy becomes concentrated at the surface and
the tropopause (or at the lid of the present model) where
gradients of are large. Perturbation winds and poten-q

tial temperature are maximized at the surface and lid
and decay slowly into the interior. This structure follows
from inversion of the PV through (2). In addition, the
horizontal scale of the perturbations becomes compa-
rable to that of reference state over the initial 1–2 days:
power at small scales decays rapidly, while larger scales
(comparable to reference state) begin to grow.

The detailed spatial structure of the perturbations and
their covariances are also strongly shaped by the dy-
namics during this initial period. At the surface and lid,
where = is much larger than in the interior, Var(q9)q
rapidly (within 10 h) becomes strongly correlated in
space with | = | . Spatial correlations become anistropicq
on the same timescale, with the strongest correlations
extending along contours of . In the interior, however,q
the initial behavior of the PV variance is just the op-
posite, with minima tending to coincide with regions of
large = ; beyond roughly 2 days of evolution this be-q
havior reverses and Var(q9) becomes correlated with = .q

The evolution equations for perturbation PV (8) and
it variance (9) provide an explanation for the behavior
of q9. Since the advection by the reference-state flow
conserves Var(q9), the growth of PV variance and the
development of its characteristic structure must arise
from perturbation advection of = ; diagnostic calcu-q
lations in the simulations confirm this. Thus, the be-
havior of the perturbations and their statistics appears
to be fundamentally controlled by the reference-state
PV gradients, which are small in the interior compared
to either top or bottom boundaries. (The PV of the mid-
latitude troposphere has qualitatively similar structure.)
The large gradients at the surface and lid, coupled with
the fact that perturbations anywhere in the domain pro-
duce significant flow at the boundaries, imply that, for
short times, there is a substantial source of PV variance
on either boundary, while that in interior is relatively
weak. As a consequence, Var(q9) at the boundaries rap-
idly becomes correlated with | = | and q9 takes theq
form of elongated bands along the narrow fronts where
= is large. The perturbation PV in the interior, byq
contrast, is simply advected by the reference-state flow,
with the result that it is deformed to smaller scales and
dissipated in regions of strong reference-state strain.
Since the strain tends to be strong where = is large,q
Var(q9) in the interior initially tends to be small (rather
than large, as on boundaries) where = is large. Theq
characteristic correlation structure, which is elongated
along reference-state PV contours, also arises from the
pertubation advection of = : Because perturbationsq
have scales comparable to the reference state, pertur-
bation advections tend to be coherent along the refer-
ence-state PV contours and to produce PV perturbations
that extend along those contours.

Snyder and Joly (1998) and Snyder (1999) provide
other, more idealized examples of this mechanism for
error growth, in which perturbations are coherent on the
spatial scale of the reference state and perturbation ad-
vections lead to displacements or distortions of existing
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features in the reference state. An alternative explana-
tion is that the error growth arises from a local shear
instability supported by strong gradients of the refer-
ence-state PV (e.g., Lilly 1972; Gauthier et al. 1993).
Our results, particularly the fact that the growing per-
turbations rapidly adopt a horizontal scale comparable
to that of the reference state, do not support the shear-
instability explanation.

We have also shown that the perturbations converge
to the subspace of the leading Lyapunov vectors on a
timescale of O(1 day), which is roughly the same as
that typifying the covariance evolution. Thus, the char-
acteristic form of the forecast-error covariances is close-
ly related to the structure of perturbations on the un-
stable manifold and knowledge of the leading Lyapunov
vectors could potentially be used to infer qualitative
features of the covariances.

The general features of the forecast-error covariances
(such as the typical vertical structure and horizontal
scale) are easily captured by ensembles of 10 members,
as is the strong relation between the PV variance and
= . With an ensemble of Ne 5 100 members, the spatialq
structure of variances and correlations can be reliably
estimated; the errors in the estimated correlations appear
to be O( ), consistent with the arguments and results21/2N e

of Houtekamer and Mitchell (1998). Since the state vec-
tor for this system has dimension of order 105, it is clear
that the use of ensembles much smaller than the state
dimension is not a fundamental obstacle to estimating
the error covariances.

The experiments presented here show that, in qua-
sigeostrophic flow, error covariances evolve rapidly to
become strongly anisotropic and that such anisotropy is
intimately related to the state of the reference flow. A
companion paper (Hamill et al. 2002) demonstrates that
such dynamically determined structure survives the as-
similation of new observations (i.e., the analysis pro-
cess) to a substantial extent. Thus, it is likely that present
assimilation schemes could be significantly improved
through the use of flow-dependent, anisotropic estimates
of forecast-error (or background) covariances. One pos-
sible approach is to develop an empirical covariance
model [similar to Benjamin and Seaman (1985) or
Riishøgaard (1998)], based on the tendencies for error
variance to be largest where the reference-state PV gra-
dient is large and for error correlations (both positive
and negative) to be enhanced along contours of the ref-
erence-state PV. Another approach is to tune an aniso-
tropic covariance model based on information from an
ensemble of forecasts (J. Purser 2000, personal com-
munication). However, given that even relatively small
ensembles can provide useful local estimates of fore-
cast-error covariances, the most promising approach

may well be to incorporate the sample covariances from
the ensemble directly into the assimilation scheme, and
in turn allow the assimilation process to update the fore-
cast ensemble given new observations (Evensen 1994;
Houtekamer and Mitchell 1998; Hamill and Snyder 2000).
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APPENDIX

Inner Products and Sampling Procedures

The inner products used here are based on the squared
streamfunction, the total energy, and the potential en-
strophy. The inner product of two states f1 and f2 are
calculated as discrete approximations to the integrals
# f1f2 dV for squared streamfunction, # =f1 · =f2 dV
for total energy, and # q̃1q̃2 dV for potential enstrophy,
where q̃ 5 ¹2f 1 [d(z) 2 d(z 2 1)]fz is the generalized
PV.

In all cases, we use second-order approximations to
the integrals (i.e., Simpson’s rule). In particular, values
at y 5 0, yL and z 5 0, 1 are weighted by one-half in
the discrete summation. Streamfunction and PV are tak-
en directly from the model grid. For energy, spatial
derivatives of f are calculated on a staggered grid (x
derivatives, for example are staggered in x) as differ-
ences between adjacent grid points of f.

Although the inner products are readily calculated
using the gridpoint values of the fields, sampling from
the distributions discussed in section 2c is most easily
accomplished using a Fourier representation. This is be-
cause the matrix S defining the inner product on the
grid points may be singular (e.g., a constant field has
zero energy) and its domain need not be restricted to
perturbations satisfying the boundary conditions (6).
The desired Fourier basis should satisfy the boundary
conditions and should be orthogonal under the chosen
inner products. This orthogonality simplifies the sam-
pling procedure, as samples from N(0, C) may then be
constructed by multiplying each basis function by an
independent random number drawn from a normal dis-
tribution with appropriate variance, and summing over
the basis.

Such a basis can be written in the form b(k̂, k)c(m̂, m)
d(n̂, n), where k, m, and n are x, y, and z wavenumbers,
respectively, and k̂, m̂, and n̂ are gridpoint indices. Let K,
M, N be the corresponding numbers of grid points. The
required functions are then

21/2b(k̂, k) 5 K exp(ik̂k2p/K),

for k̂ 5 0, . . . , K 2 1 and K 5 0, . . . , K 2 1, and

21/2N if n 5 0;
d(n̂, n) 5

21/25(N/2) cos[n(n̂ 2 1/2)p/N] if n 5 1, . . . , N 2 1;
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for n̂ 5 1, . . . , N. When k 5 0,

c(m̂, m)

21/2(M/2) cos(mm̂p/M) if m 5 1, . . . , M 2 1;
5

21/25M cos(m̂p) if m 5 M;

for m̂ 5 0, . . . , M; when k . 0,
21/2c(m̂, m) 5 (M/2) sin(mm̂p/M)

for m 5 1, . . . , M 2 1 and m̂ 5 0, . . . , M.
To sample from the distribution corresponding to the

squared streamfunction inner product, we set

f9 5 a b(k̂, k)c(m̂, m)d(n̂, n),O kmn
k,m,n

and sample each amplitude akmn from N(0, 1). For the
energy inner product, akmn is sampled from N(0, s2), where

2s 5 2(3 2 coskp/K 2 cosmp/M 2 cosnp/N).

The sampling for potential enstrophy proceeds as for the
squared streamfunction, but the generalized PV is ex-
panded in the basis functions. In all cases, the variance of
akmn is given by the norm of the basis function using the
chosen inner product.
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